Multimedia Effect in Problem Oct. 18, 2019 Solving: A Meta-Analysis

Liru Hu, Gaowei Chen, Pengfei Li, Jing Huang

Which one is better?

A full water tank on a water dispenser contains 20 liter. Students from the dispenser fill their 25 cl water bottles.

How many water bottles can be filled from a full water tank?

bottles

Pictures, graphs, diagrams, animations and videos have been very common on usual exercises and standardized tests.

The multimedia effect in problem solving describes the phenomenon where an individual's problem-solving performance is enhanced when pictures are added to textual problems.

Literature Review

Lindner, Lüdtke, Grund, & Köller, 2017; Whitley, Novick, & Fisher, 2006

Lindner, Eitel, Strobel, & Köller, 2017; Saß, Wittwer, Senkbeil, & Köller. 2012: Ögren. Nyström, & Jarodzka, 2017

Berends & van Lieshout, 2009

conducted to determine the aggregated effect and its relevant boundary condition

•

(Berends & van Lieshout 2009; Elia et al., 2007; Gagatsis & Elia, 2004

Response

Certainty

Lindner et al., 2017; Wise, Pastor, & Kong, 2009; Ögren, Nyström, & Jarodzka, 2017 ; Hao, 2010; Lindner et al., 2016; Bjork, Dunlosky, & Kornell, 2013

Function types of pictures(Agathangelou et al., 2008; Carney & Levin, 2002; Elia et al., 2007; Elia & Philippou, 2004; Gagatsis & Elia, 2004; Lindner et al., 2016, 2018).

- Informational
- Decorative
- Representational
- Organisational

Informational

About how many apples are there in the bag? apples

An informational picture in Math (Hoogland, de Koning, Bakker, Pepin, & Gravemeijer, 2018)

Carl has 5 friends and George has 6 friends. Carl and George decide to give a party together. They invite all their friends. All friends are present. How many friends are at the party?

s in Math (Dewolf, Van Dooren, Hermens, & Verschaffel, 2015) Maria designed an experiment using salt and water. She experienced that 15g salt dissolved in 50ml water, 30g salt in 100ml water, 45g salt in 150ml water and 60g salt in 200ml water. The water's temperature was always 25°C. Maria stirred every mixture several times.

What was Maria studying in her experiment?

- A How much salt will dissolve in different volumes of water.
- B How much salt will dissolve at different temperatures.
- © If stirring increases how fast salt

A representational picture

[®] If stirring decreases how fast salt Representational

Information about prevalence of the diseases, and sensitivity and false-positive rate of the tests provided in the probability (first line) and natural frequency (second line) conditions. Note that the false-positive rate is the complement of the specificity.

Diagnostic task	Base rate	Sensitivity	False-positive rate	Positive predictive value
Breast cancer	1%	80%	10%	7%
	100 of 10,000	80 of 100	990 of 9900	80 of 1070

Imagine a representative sample of women who got a positive result on the mammography. Give your best guess: how many of these women do you expect to have breast cancer?

> An organizational pictures in Medical Science (Garcia-retamero & Hoffrage, 2013)

Overall Women who have breast cancer populatie Organisational

1B

Problem complexity (Hoogland, Pepin, de Koning, Bakker, & Gravemeijer, 2018; Lindner et al., 2016; Solano-Flores, Wang, & Shade, 2016; Zahner & Corter, 2010)

• Pictures are more helpful in wordy/difficult problems

Research hypotheses

H1 Multimedia Effect on Response Accuracy

- H3 Multimedia Effect on Response Certainty
- H4 Moderators
 - Picture function
 - Problem difficulty

Author(s) and Year	Picture Type	Sample Siz	e Z-val	P-val		Weight, Hed	ges' g [95% C
Representational							
Maries, 2013b	Representational	85	-4.305	0	⊢∎1	3.11% -1	.00 [-1.46, -0.54
Solano-Flores et al., 2014	Representational	728	2.065	0.039	H	4.14% 0	.08 [0.00, 0.15
Ögren, Nyström, & Jarodzka, 2017a	Representational	36	1.427	0.154	⊢ ; ■ 1	2.45% 0	.47 [-0.18, 1.13
Saß, Wittwer, Senkbeil, & Köller, 2012a	Representational	258	2.798	0.005	⊦≖⊣	3.80% 0	.35 [0.10, 0.59
Ott, Brünken, Vogel, & Malone, 2018	Representational	146	4.531	0	-■-	3.81% 0	.55 [0.31, 0.79
Lindner, Lüdtke, Grund, & Köller, 2017a	Representational	401	2.514	0.012	;=i	4.11% 0	.13 [0.03, 0.22
Lindner, Eitel, Strobel, & Köller, 2017a	Representational	24	2.723	0.006	:	3.23% 0	.58 [0.16, 1.01
Lindner, Eitel, Barenthien, & Köller, 2018c	Representational	129	1.998	0.046	⊢ ∎-1	3.48% 0	.35 [0.01, 0.70
Lindner, Eitel, Barenthien, & Köller, 2018b	Representational	129	-0.126	0.9	⊢ •−1	3.48% -0	.02 [-0.37, 0.32
Lindner, Ihme, Saß, & Köller, 2016	Representational	30	8.548	0	; H al	4.08% 0	.52 [0.40, 0.63
Dewolf, Van Dooren, Ev Cimen, & Verschaffel, 2014b	Representational	233	-0.193	0.847	⊢ .	3.77% -0	.03 [-0.28, 0.23
Dewolf, Van Dooren, Ev Cimen, & Verschaffel, 2014a	Representational	402	0.897	0.37	H≡-1	3.93% 0	.09 [-0.11, 0.28
RE Model for Subgroup (Q = 86.81, df = 11, p = 0.00; $I^2 = 9$	3.8%)				•	0	.18 [-0.08, 0.44
Organizational							
Whitley, Novick, & Fisher, 2006a	Organizational	31	3.03	0.002	:⊢	2.18% 1	.15 [0.41, 1.89
Garcia-Retamero, Galesic, & Gigerenzer, 2010	Organizational	116	4.652	0	·	3.37% 0	.90 [0.52, 1.28
Brase, 2008	Organizational	289	0.957	0.339	H=-1	3.92% 0	.10 [-0.10, 0.30
Garcia-retamero & Hoffrage, 2013a	Organizational	80	3.301	0.001	· · · · ·	3.13% 0	.76 [0.31, 1.21
Beveridge & Parkins, 1987b	Organizational	91	1.726	0.084	i ⊢ ∎1	3.22% 0	.37 [-0.05, 0.79
Beveridge & Parkins, 1987a	Organizational	145	1.525	0.127	<u>k</u>	3.54% 0	.26 [-0.07, 0.59
Gick & Holyoak, 1983	Organizational	240	1.038	0.299	H=-1	3.78% 0	.13 [-0.12, 0.39
RE Model for Subgroup (Q = 24.41, df = 6, p = 0.00; $I^2 = 77$.9%)				•		0.46 [0.10, 0.81
Multiple							
Ginther 2009	Multiple	160	0.961	0.200	ي في	4 02% 0	07 [-0.09 0.22
Saß Wittwer Senkheil & Köller 2012h	Multiple	100	2 1 4 1	0.309	·	3.47% 0	38[0.03 0.73
Ramian, 2011	Multiple	567	19.216	0.032		4.11% 0	.98 [0.88, 1.08
RE Model for Subgroup (Q = 97.90, df = 2, p = 0.00 ; $I^2 = 96$.8%)					- 0	.48 [-0.69, 1.66
Informational							
			0.07			2 40%	CO LO 22 4 00
Goolkasian, 1996a	Informational	38	3.87	0		3.49% 0	.00[0.33, 1.02
Maries, 2013a	Informational	85	-4.282	0		3.11% -0	.99 [-1.45, -0.54
Tang & Huang, 2004 Headland de Kening Bakker Banin & Crovemeijer 2018	Informational	627	3.892	0		4.13% 0	.16[0.08, 0.23
Garrett 2008	Informational	31842	16.803	0 755		4.17% 0	08 [-0.41 0.56
RE Model for Subgroup (Q = 35.40, df = 4, p = 0.00; l ² = 99	0.0%)	04	0.012	0.755		0.0170 0	
					-	a	.02 [-0.72, 0.76
Decorative Berends & van Lieshout, 2009b	Decorative	130	0.01	0.992	:	3.98% 0	.00 [-0.17, 0.17
RE Model for Subgroup ($\Omega = 0.00$, df = 0, $p = 1.00$; $l^2 = 0.00$	%)	100	0.01	0.002			00 1-0 17 0 17
The model for Subgroup ($Q = 0.00$, $u = 0$, $p = 1.00$, $T = 0.00$	/0)						.00 [-0.17, 0.17
RE Model for All Studies (Q = 467.40, df = 27, p = 0.00;	l ² = 97.4%)				•	100.00% 0	.25 [0.07, 0.42
					i		
				-3	-1.39 0 1.3	9	
					Hedges' g		

Hedges' *g* = 0.25 *p* = 0.01

_

Author(s) and Year	Picture Type	Sample Siz	ze Z-val	P-val		Weight, Hedges' g [95	CI]
Representational Maries, 2013b Solano-Flores et al., 2014	Representational Representational	85 728	-4.305	0	⊢ ∎	3.11% -1.00 [-1.46, 4.14% 0.08 [0.00	Function type of
Ögren, Nyström, & Jarodzka, 2017a	Representational	36	1.427	0.154		2.45% 0.47 [-0.18.	13]
Saß, Wittwer, Senkbeil, & Köller, 2012a	Representational	258	2.798	0.005	:+=-1	3.80% 0.35 [0.10,	591 • • • • • • • • • •
Ott, Brünken, Vogel, & Malone, 2018	Representational	146	4.531	0	: H -	3.81% 0.55 [0.31,	
Lindner, Lüdtke, Grund, & Köller, 2017a	Representational	401	2.514	0.012	j=i	4.11% 0.13 [0.03,	
Lindner, Eitel, Strobel, & Köller, 2017a	Representational	24	2.723	0.006	· - - − 1	3.23% 0.58 [0.16,	01]
Lindner, Eitel, Barenthien, & Köller, 2018c	Representational	129	1.998	0.046	┝╼╾┥	3.48% 0.35 [0.01,	
Lindner, Eitel, Barenthien, & Köller, 2018b	Representational	129	-0.126	0.9	⊢ ≑ -1	3.48% -0.02 [-0.37,	
Lindner, Ihme, Saß, & Köller, 2016	Representational	30	8.548	0		4.08% 0.52 [0.40,	
Dewolf, Van Dooren, Ev Cimen, & Verschaffel, 2014b	Representational	233	-0.193	0.847	F- # -1	3.77% -0.03 [-0.28,	
Dewolf, Van Dooren, Ev Cimen, & Verschaffel, 2014a	Representational	402	0.897	0.37	H=-1	3.93% 0.09 [-0.11,	Urganisational (Hedges' q =
RE Model for Subgroup (Q = 86.81, df = 11, p = 0.00; I ² = 9	93.8%)				•	0.18 [-0.08,	
Ormanizational							-0.46 n = 0.00
Whitey Nevick & Ficher 2006a	Organizational	24	2.02	0.000		2 1 99/ 1 1 5 1 0 4 1	0.10, p $0.00)$
Careia Retemore, Calesia & Cigeronzer, 2010	Organizational	31	3.03	0.002		2.18% 1.15[0.41,	89] 291
Brase 2008	Organizational	110	4.052	0 220	;	3.37% 0.90[0.32,	
Garcia-retamero & Hoffrage, 2013a	Organizational	209	3 301	0.001		3 13% 0 76 [0 31	Representational (Hedges' <i>a</i> =
Beveridge & Parkins, 1987b	Organizational	91	1 726	0.001	; ; -,	3.22% 0.37 [-0.05.	
Beveridge & Parkins, 1987a	Organizational	145	1.525	0.127		3.54% 0.26 [-0.07,	
Gick & Holyoak, 1983	Organizational	240	1.038	0.299	; =-1	3.78% 0.13 [-0.12,	(0.18, p = (0.15))
RE Model for Subgroup (Q = 24.41, df = 6, p = 0.00; $I^2 = 75$	7.9%)				•	0.46 [0.10,	
Marthinto							lnformational/lladges' = 0.02
Multiple	Markinste					4.000/ 0.071.0.00	a_{m} – Informational (Hedges $a = 0.02$)
Gininer, 2009 Safi, Wittwor, Sankhail, & Källar, 2012b	Multiple	160	0.861	0.389	H = -1	4.02% 0.07 [-0.09,	71
Ramian 2011	Multiple	131	2.141	0.032	,	3.47% 0.38[0.03, 4.11% 0.98[0.88	$\rho = 0.05$
RE Model for Subgroup (Q = 97.90, df = 2, p = 0.00; $I^2 = 96$	6.8%)	001	10.210	0		0.48 [-0.69,	p = 0.95 and $p = 0.95$
Informational							\mathbf{D}
Goolkasian, 1996a	Informational	38	3.87	0		3.49% 0.68 [0.33,	μ_{ij} Decorative (neuges $q = 0.00, p$
Maries, 2013a	Informational	85	-4.282	0		3.11% -0.99 [-1.45, -	
Yang & Huang, 2004	Informational	627	3.892	0		4.13% 0.16[0.08,	-1 00
Garrett. 2008	Informational	31842 64	0.312	0 755	, , , , , , , , , , , , , , , , , , ,	4.17% 0.09[0.08, 3.01% 0.08[-0.41.	-1.00)
RE Model for Subgroup (Q = 35.40, df = 4, p = 0.00; $I^2 = 95$	9.0%)	04	0.012	0.100			
						0.02 [-0.72,	Multiple (Hedges' $a - 0.18 p -$
Decorative							Nulliple (neuges $y = 0.40, p =$
Berends & van Lieshout, 2009b	Decorative	130	0.01	0.992	ŀ ≑ 1	3.98% 0.00 [-0.17,	
RE Model for Subgroup (Q = 0.00, df = 0, p = 1.00; $I^2 = 0.0$	1%)				•	0.00 [-0.17,	17] (U.OO)
RE Model for All Studies ($\Omega = 467.40$, df = 27, $\rho = 0.00$	$ ^{2} = 97.4\%$					100.00% 0.25 [0.07	421
x = 10000 for x = 20000 ($x = 400.40$, $x = 20$, $p = 0.00$,				T	100.0070 0.20[0.07,	·~j
							
				-3	-1.39 0 1.39		17
					Hedges' g		
					0 0		

Possible Moderators	Q	I ²	p- value	k	Effect s (Hedges' g)	ize 95% Hedges'	CI for g
				2			
			0.502	Û	0.00	[0.000,	0.02]
Problem difficulty**	248.	96.24		1			
(1) Easy	93	%	0.124	4	0.27	[-0.09, 0	.63]
	34.0	/9.91	0.005*	l	o 4 -		
(2) Difficult	5	%	*	4	0.17	[0.06, 0.2	27]
Domani	107			1			
	107.	95.67	0.200	1	0.16		471
(1) Science	81	% 07.65	0.300	4	0.16	[-0.15, 0	.46]
(2) Math	327. 42	97.05	0.020*	0	0.22	[0.04.04	601
(2) Maui	4Z 173	70 85 71	0.030*	9	0.32	[0.04, 0.0	50]
(3) Medicine	8	0/0	0 160	3	0.56	[_0 54]	65]
(3) Wedleme	0	0 00	0.100	5	0.50	[0.5 1, 1	.00]
(4) Language	0.00	%	0.020*	2	0.07	[0.03, 0,	10]
Answer format**	0.00	, .	0.020	_]
Answer for mat	66.6	83.86	0.000*	1			
(1) Multiple-choice	2	%	**	3	0.31	[0.17. 0.4	44]
(-)	380.	97.96		1		[•••••,•••]
(2) Structured open response	71	%	0.250	5	0.18	[-0.15, 0	.51]
Testing environment***						-	-
8	52.2	90.74	0.003*	1			
(1) Computer based	2	%	**	2	0.36	[0.15, 0.:	56]
	338.	96.99		1		Ľ	1
(2) Paper and pencil	00	%	0.269	6	0.15	[-0.12, 0	.42]
Educational stage							
8	46.2	78.72	0.005*	1			
(1) Primary	5	%	*	1	0.21	[0.08, 0.1	35]
	192.	95.36		1			
(2) University	57	%	0.280	1	0.24	[-0.23, 0	.70]
	26.1	97.55		_			
(3) Other	3	%	0.107	6	0.29	[-0.09,0.	67]
				· •			

Problem difficulty is also a significant moderator

Difficult (Hedges' g = 0.17, p = 0.00),

Easy: No effect

Author(s) and Year	Picture Type	Sample Size	Z-val	P-val		Weight, Hedges' g [95% CI]
Berends & van Lieshout, 2009a	Decorative	130	-1.965	0.049	-	19.35% -0.17 [-0.34, -0.00]
Schwert, 2007	Informational	144	-2.174	0.03		19.99% -0.18 [-0.35, -0.02]
Whitley, Novick, & Fisher, 2006b	Organizational	31	0.665	0.506	·	3.19% 0.23 [-0.45, 0.92]
Lindner, Eitel, Strobel, & Köller, 2017b	Representational	62	0.662	0.508		14.30% 0.08 [-0.16, 0.33]
Lindner, Lüdtke, Grund, & Köller, 2017b	Representational	401	2.158	0.031	-	25.07% 0.11 [0.01, 0.21]
Saß, Wittwer, Senkbeil, & Köller, 2012	Representational	258	0.916	0.36		14.49% 0.11 [-0.13, 0.36]
Ögren, Nyström, & Jarodzka, 2017b	Representational	36	-0.063	0.95		3.60% -0.02 [-0.66, 0.62]
RE Model for All Studies (Q = 14.87, df = 6, p =	0.02; I ² = 58.9%)		Heo	-3 -1.39 Hed	• 0 1.39 Iges' g g = -0	100.00% -0.01 [-0.15, 0.13] .01, <i>p</i> = 0.90

Author(s) and Year	Picture Type	Sample Size	Z-val	P-val		Weight, Hedges' g [95% CI]
Garcia-retamero & Hoffrage, 2013b Dewolf, Van Dooren, Hermens, & Verschaffel, 2015 Lindner, Eitel, Barenthien, & Köller, 2018a	Organizational Representational Representational	80 20 129	2.417 2.033 2.133	0.016 0.042 0.033	 	34.73%0.55 [0.10, 0.99]8.64%0.92 [0.03, 1.81]56.63%0.38 [0.03, 0.72]
RE Model for All Studies (Q = 1.37, df = 2, p = 0.50;	$^{2} = 0.0\%)$		г			100.00% 0.48 [0.01, 0.96]
			-3	-1.39 Hedges	0 1.39 s'g	
Response Certainty			Hec	lges' g	7 = 0.	48, <i>p</i> = 0.05

Response Accuracy Multimedia Effect on Response Accuracy
 Moderators: Picture function+Problem difficulty

- Function type of pictures
 Only Representational and Organisational pictures
- Problem difficulty
 Only for Difficult Problems

Response Accuracy Moderating effect of problem difficulty conforms to the element interactivity effect

 Interactivity effect occurs when multimedia effects present in high intrinsic cognitive load conditions disappear or even reverse in low intrinsic cognitive load conditions (Chen et al., 2015; Chen, Kalyuga, & Sweller, 2016).

Response Accuracy Moderating effect of picture function challenges *Less is more* in classic multimedia learning theories.

- Informational pictures have little impact.
- Representational, organisational and decorative pictures are not harmful.

Response Certainty

Motivation, Engagement, Pleasure, Self-efficacy

Less critical with text Decreased time spent processing text Suboptimal restudy behavior etc.₂₅

- Quality of studies is not strictly evaluated
- More moderators need to be identified and analysed

Which one is better?

A full water tank on a water dispenser contains 20 liter. Students from the dispenser fill their 25 cl water bottles.

How many water bottles can be filled from a full water tank?

bottles

- •There are still very few design principles guiding multimedia item designs.
- •Existing multimedia learning principles are not enough to guide multimedia item design.
- •Embedding multimedia can facilitate item access and accommodation, it may also lots of issues that have yet to be fully explored. Further prospective studies are in urgent need.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. *Cognition and Instruction*, 8(4), 293-332.

Chen, O., Kalyuga, S., & Sweller, J. (2015). The worked example effect, the generation effect, and element interactivity. *Journal of Educational Psychology*, *107*(3), 689-704. <u>http://doi.org/10.1037/edu0000018</u> Elia, I., & Philippou, G. (2004). The functions of pictures in problem solving. In M. Johnsen Hoines, & A. Berit Fuglestad (Eds.), *Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education: Vol. 2* (pp. 327-334). Bergen: PME.

Fuchs, L. S., Fuchs, D., Compton, D. L., Hamlett, C. L., & Wang, A. Y. (2015). Is word-problem solving a form of text comprehension? *Scientific Studies of Reading*, *19*(3), 204-223. http://doi.org/10.1080/10888438.2015.1005745 Hoogland, K., de Koning, J., Bakker, A., Pepin, B. E. U., & Gravemeijer, K. (2018). Changing representation in contextual mathematical problems from descriptive to depictive: The effect on students' performance. *Studies in Educational Evaluation*, *58*(June), 122-131. http://doi.org/10.1016/j.stueduc.2018.06.004

Hoogland, K., Pepin, B., de Koning, J., Bakker, A., & Gravemeijer, K. (2018). Word problems versus image-rich problems: An analysis of effects of task characteristics on students' performance on contextual mathematics problems. *Research in Mathematics Education*, *20*(1), 37-52. <u>http://doi.org/10.1080/14794802.2017.1413414</u> Lindner, M. A., Lüdtke, O., Grund, S., & Köller, O. (2017). The merits of representational pictures in educational assessment: Evidence for cognitive and motivational effects in a time-on-task analysis. *Contemporary Educational Psychology*, *51*(September), 482-492. <u>http://doi.org/10.1016/j.cedpsych.2017.09.009</u>

Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. Mayer (Ed.), *The Cambridge Handbook of Multimedia Learning, Second Edition* (pp. 279-315). Cambridge: Cambridge University Press. http://doi.org/10.1017/CB09781139547369.015

McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: The effect of brain images on judgments of scientific reasoning. *Cognition*, *107*(1), 343-352. <u>http://doi.org/10.1016/j.cognition.2007.07.017</u>

Ögren, M., Nyström, M., & Jarodzka, H. (2017). There's more to the multimedia effect than meets the eye: Is seeing pictures believing? *Instructional Science*, *45*(2), 263-287. <u>http://doi.org/10.1007/s11251-016-9397-6</u>

Saß, S., & Schütte, K. (2016). Helping poor readers demonstrate their science competence: Item characteristics supporting text-picture integration. *Journal of Psychoeducational Assessment*, *34*(1), 91-96.

http://doi.org/10.1177/0734282915588389

Saß, S., Schütte, K., & Lindner, M. A. (2017). Test-takers' eye movements: Effects of integration aids and types of graphical representations. *Computers and Education*, *109*, 85-97. http://doi.org/10.1016/j.compedu.2017.02.007 Saß, S., Wittwer, J., Senkbeil, M., & Köller, O. (2012). Pictures in test items: Effects on response time and response correctness. *Applied Cognitive Psychology*, *26*(1), 70-81.

Schneider, S., Nebel, S., & Rey, G. D. (2016). Decorative pictures and emotional design in multimedia learning. *Learning and Instruction*, 44(March), 65-73. <u>http://doi.org/10.1016/j.learninstruc.2016.03.002</u>

12/10/21

Main Code	Category
Outcome	Response accuracy/response time/response certainty.
Function type	Decorative/representational/organisational/informational/ multiple.
Experimental design	between group design/within group design, and other.
Control condition	Yes/No
Domain	Mathematics/Science/Language/Medicine.
Educational stage	Primary/university/other.
Problem size	The number of problems in one group.
Answer format	Multiple-choice/structured open response
Problem difficulty	Easy/difficult
Testing environment	Paper and pencil/computer-based

Possible Moderators	Q	I ²	р-	k	Effect	size	95% CI	for
	-		value	2	(Hedges' g)		Hedges' g	
Problem size			0 502	8	0.00		[_0 008 0 02]	
Problem difficulty**	248.	96.24	0.502	1	0.00		[-0.000, 0.02]	
(1) Easy	93	%	0.124	4	0.27		[-0.09, 0.63]	
(-)	34.0	79.91	0.005*	1			[]	
(2) Difficult	5	%	*	4	0.17		[0.06, 0.27]	
Domain*							. /]	
	107.	95.67		1				
(1) Science	81	%	0.300	4	0.16		[-0.15, 0.46]	
	327.	97.65						
(2) Math	42	%	0.030*	9	0.32		[0.04, 0.60]	
	17.3	85.71						
(3) Medicine	8	%	0.160	3	0.56		[-0.54, 1.65]	
	0.00	0.00	0.000	•	0.05		50.02.0103	
(4) Language	0.00	%	0.020*	2	0.07		[0.03, 0.10]	
Answer format**		00.06	0.000*					
	66.6	83.86	0.000*	1	0.21		FO 17 0 441	
(1) Multiple-choice	2	% 07.06	**	5	0.31		[0.17, 0.44]	
(2) Structured open response	580. 71	97.90 %	0.250	1	0.18		[015 051]	
(2) Structured open response	/1	/0	0.230	5	0.18		[-0.15, 0.51]	
resung environment ^{***}	52.2	00.74	0.002*	1				
(1) Computer based	32.2 2	90.74 0/2	**	2	0.36		[0.15, 0.56]	
(1) Computer based	238	70 06 00		2	0.30		[0.13, 0.30]	
(2) Paper and pencil	00	%	0 269	6	0.15		[-0 12 0 42]	
Educational stage	00	70	0.20)	0	0.15		[0.12, 0.12]	
Educational stage	46.2	78 72	0.005*	1				
(1) Primary	5	%	*	1	0.21		[0.08, 0.35]	
(1) 1111111	192.	95.36		1	0.21		[0.000, 0.000]	
(2) University	57	%	0.280	1	0.24		[-0.23, 0.70]	
	26.1	97.55						
(3) Other	3	%	0.107	6	0.29		[-0.09,0.67]	
				2				
Sample size			0.696	8	0.00		[-0.00, 0.00]	
Control condition**								
	258.	96.82						
(1) Without control variables	68	%	0.032*	9	0.32		[0.03, 0.60]	
(2) With single or multiple control	152.	95.31		1			F 0 0 0 0 1 5 1	
variables	43	%	0.079	9	0.21		[-0.03, 0.45]	
Institution location**								
	90.7	86.41	0.000*	1	0.00		50.1.5 0.413	
(1) Europe	8	%	* *	5	0.28		[0.15, 0.41]	
(2) United States	80.7	96./8	0.620	1	0.11		[0 28 0 60]	
(2) United States	4 174	70 08 68	0.030	0	0.11		[-0.38, 0.00]	
(3) Other	17 4 . 76	%	0 290	3	0.41		[-0.82 1.65]	
Evnorimental design**	10	/0	0.270	5	V. I I		[0.02, 1.05]	
Experimental design	363	98 40		1				
(1) Within group design	56	%	0.016*	0	0.31		[0.07, 0.55]	
(-)	98.7	89.07	0.010	ĩ			[3.07, 0.00]	
(2) Between group design	0	%	0.113	8	0.11		[-0.05, 0.46]	

Some other moderators on response accuracy